Sistemi ad alta precisione e basso costo per la qualità dell’aria e la diagnostica medica

21/09/2021 Il ghost imaging sfrutta la correlazione quantistica tra due fotoni per trasferire l’informazione raccolta da un fotone all’altro. Al laboratorio Quantum @ Trento si lavora per passare dalla teoria alla pratica e utilizzare questa tecnica per costruire strumentazioni di alta precisione, basso costo e piccole dimensioni per applicazioni ambientali (ad esempio per il controllo della qualità dell’aria) e mediche (come l’analisi in-vivo di tessuti biologici per la microscopia diagnostica, ad esempio per la rivelazione di cellule tumorali).

Leonardo Gasparini, ricercatore della Fondazione Bruno Kessler, al lavoro nel team del laboratorio Q@TN, spiega come il ghost imaging non sia più fantascienza. «Negli anni scorsi, abbiamo lavorato al progetto SuperTwin (super gemello), finanziato dall’Unione Europea, che ha portato ad un primo prototipo di microscopio ottico innovativo che sfrutta i fotoni correlati per rompere la barriera di risoluzione imposta dalle leggi della fisica classica. Sfruttando questa tecnica, in futuro sarà possibile osservare particelle di poche centinaia di nanometri, come un virus» commenta. «Forti di questa esperienza, siamo ora al lavoro a un nuovo progetto europeo, che sfrutta la tecnica del ghost imaging per creare un microscopio ottico in grado di “vedere” delle caratteristiche “invisibili” di un campione».

Con l’undetected photon spectroscopy, infatti, non è necessario misurare il fotone che interagisce con l’oggetto e che classicamente porta con sé l’informazione. Per spiegare in cosa consista questa tecnica, si utilizza a volte l’esempio di una coppia affiatata: da un partner si riesce a cogliere lo stato d’animo dell’altro senza nemmeno doverlo guardare, perché le preoccupazioni e le soddisfazioni dell’uno lasciano inevitabilmente un’impronta sull’altro membro della coppia. Nel mondo quantistico succede qualcosa di simile. Grazie alla correlazione quantistica tra i due fotoni, le modificazioni di uno sono riflesse nello stato dell’altro. È perciò possibile utilizzare il fotone correlato di facile lettura per ottenere informazioni sul fotone partner di difficile accesso. In altre parole, diventa possibile vedere una particella di luce senza guardarla.