

The rarest among rares:

Clinical and genomic approach to undiagnosed patients

Bruno Dallapiccola Trento, CIBIO & FBK November 8th, 2018

"By definition, diseases without a name and, thus, undiagnosed clinical conditions, are rare diseases"

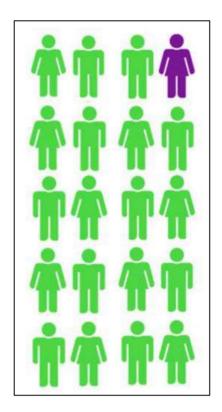
Ségolène Aymé, Founder of Orphanet

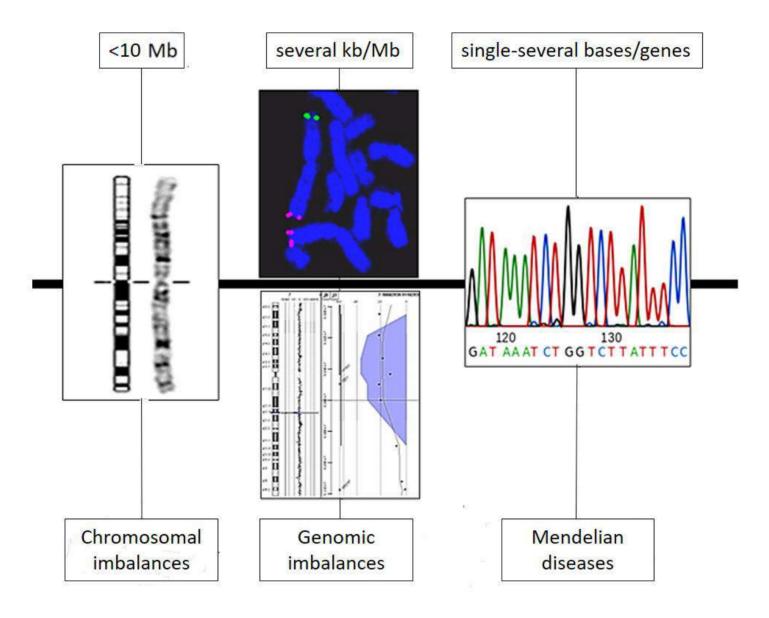
Rare diseases' definitions

Affect <200 000 individuals (< 1:1.500)

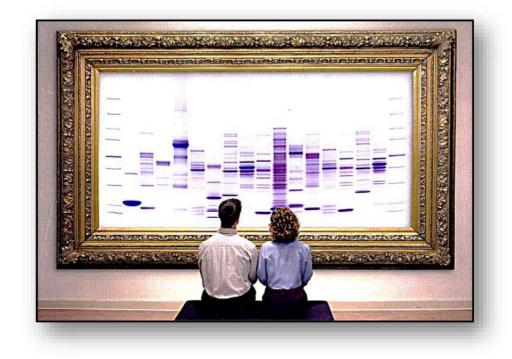
Affect <50 000 individuals (<1:2.500)

Affect <5:10 000 individuals (<1:2.000)</p>



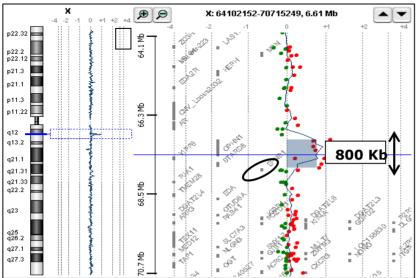

The rare diseases' figures

- There are >7 000 RDs (and ~300 rare tumors).
- >1:20 people affected.
- 1-2 million people affected in Italy?
- ~30 million people affected in Europe.
- ~350 million people worldwide.
- >50% of patients are children.
- 30% of patients has a life expectancy of <5 years.
- 90% are genetic diseases.



Traditional genetic approaches to rare diseases

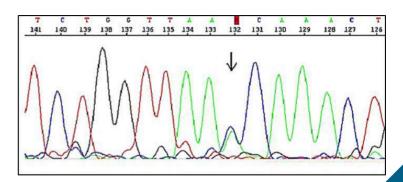
"Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder".


National Institute of Health, 2018

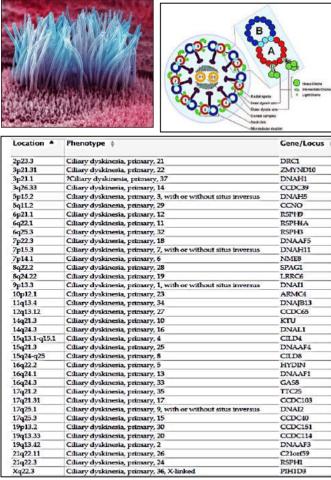
To make the diagnosis

- Intellectual disability
- Hypotonia, muscles hypotrophy
- Microcephaly
- Convulsions
- Scoliosis
- MRI cerebral/cerebellar hypotrophy

dupXq12q13 - OPHN1 gene

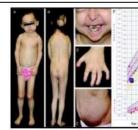

To confirm a clinical diagnosis

 Retinal capillary hemangiomas



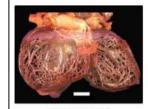
- multiple bilateral renal cell carcinomas
- cystic pancreatic lesions

To address genetic heterogeneity



Primary ciliary dyskinesia

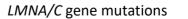
To address genotype-phenotype correlations


Hutchinson-Gilford Progeria (HGPS)

Mandibulo-acral dysplasia (MAD)

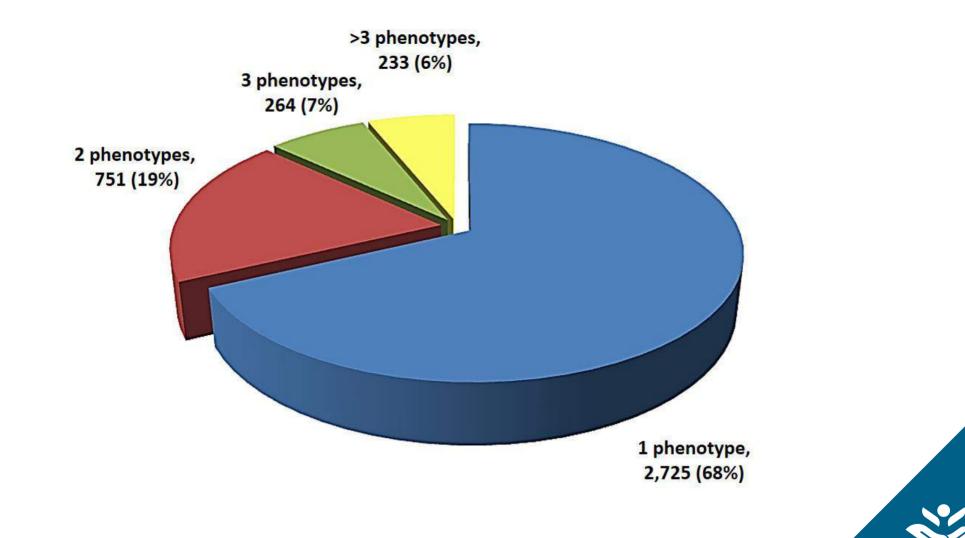
Familial parrtial lipodystrophy (FPLD2)

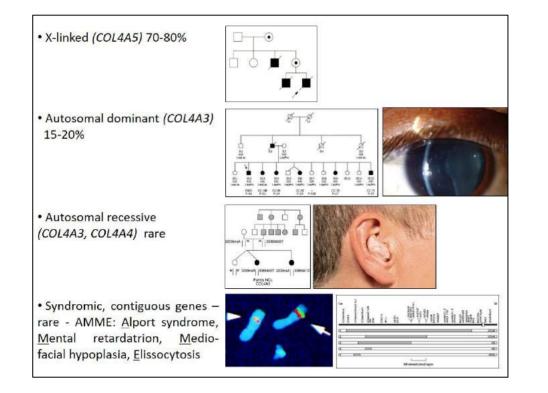
Cardiomyopathy dilatative 1A (CMD1A)

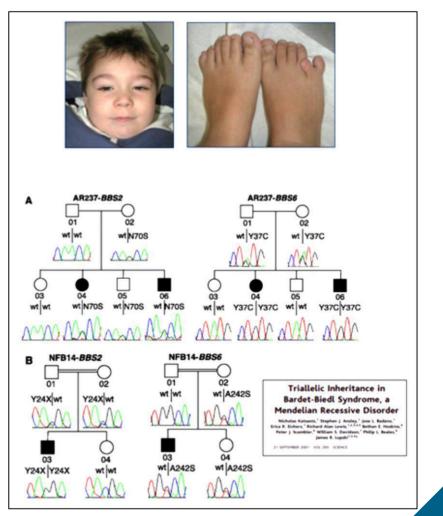

Lipodystrophic diabetes

Emery-Dreifuss, muscular dystrophy, type 2 (EDMD2)

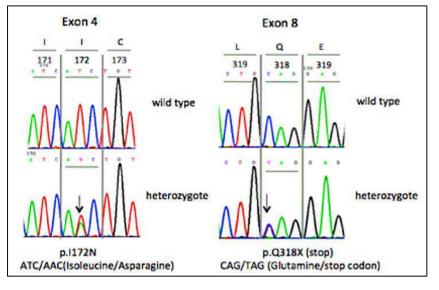
Limb girdle muscular dystrophy, type1B (LGMD1B)

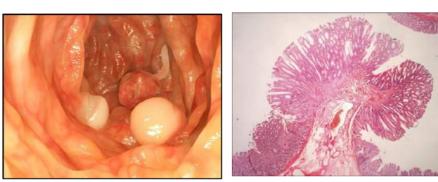

Restrictive dermopathy (lethal) (RD)

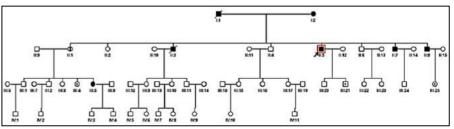

Charcot-Marie-Tooth disease type 2B1 (CMT2B1)

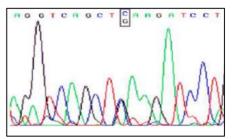


Phenotype distribution in 3,973 annotated genes (OMIM updated October 22nd, 2018)


To address heterogeneity of inheritance models To uncover the mechanisms of atypical inheritance

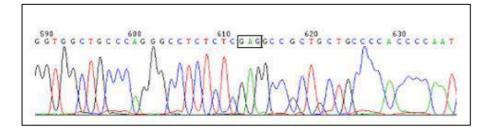



To chose the more appropriate therapy

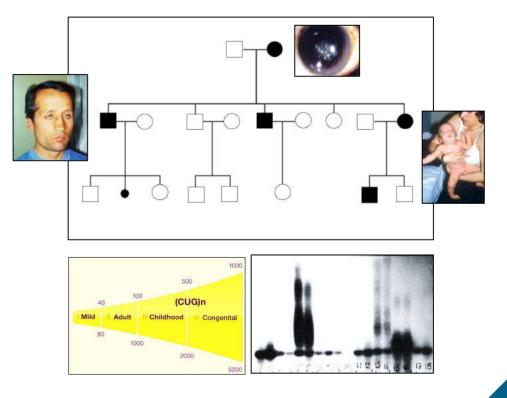


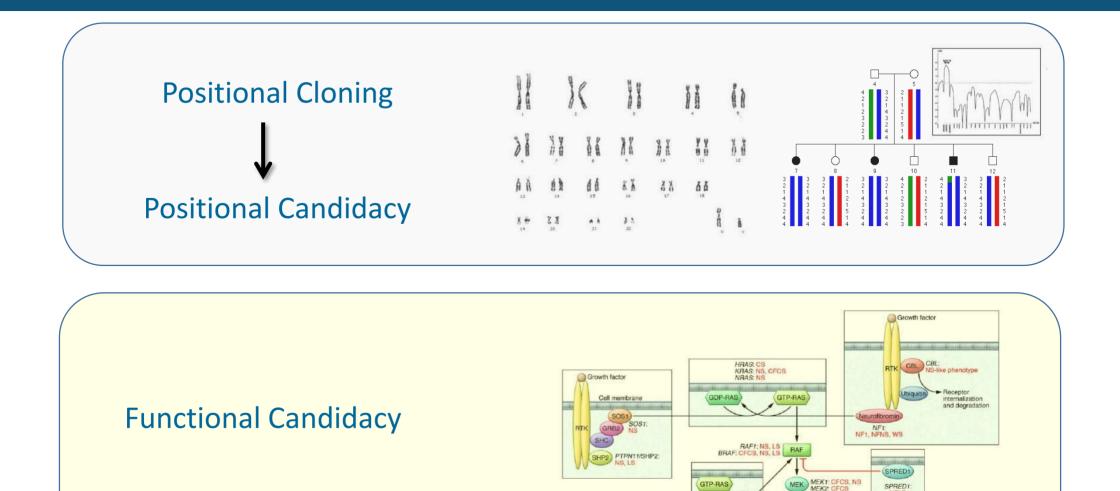
Adrenogenital syndrome – 21-hydroxilase deficiency

Presymptomatic testing to avoid inappropriate procedures



Familial adenomatous polyposis


To provide accurate genetic counselling


X-linked nephrogenic diabetes insipidus (AVPR2 gene)

To predict the disease's severity

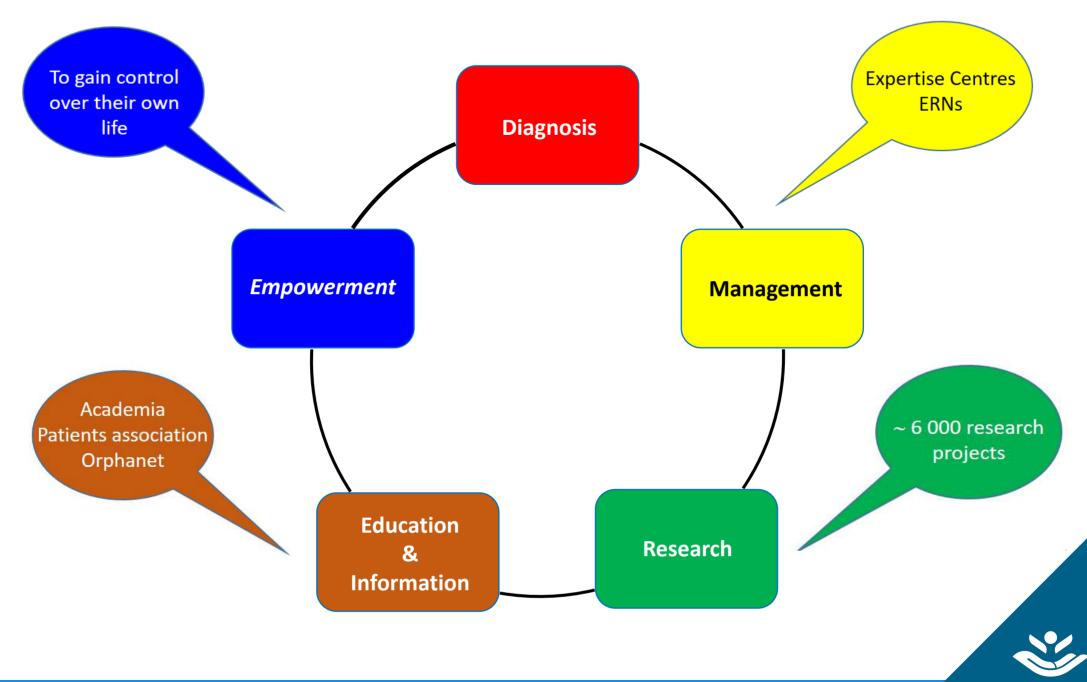
Myotonic dystrophy 1 (DMPK gene)

The traditional approaches to genetic diseases have uncovered the molecular defect underlying a few thousands Mendelian disorders. The progress has been relatively slow because of the small number of informative families and limited information on the diseases' mechanisms.

GTP-RAS

SHOC2 PP1

SHOC2.


SPRED1 NELS

-PD0325901

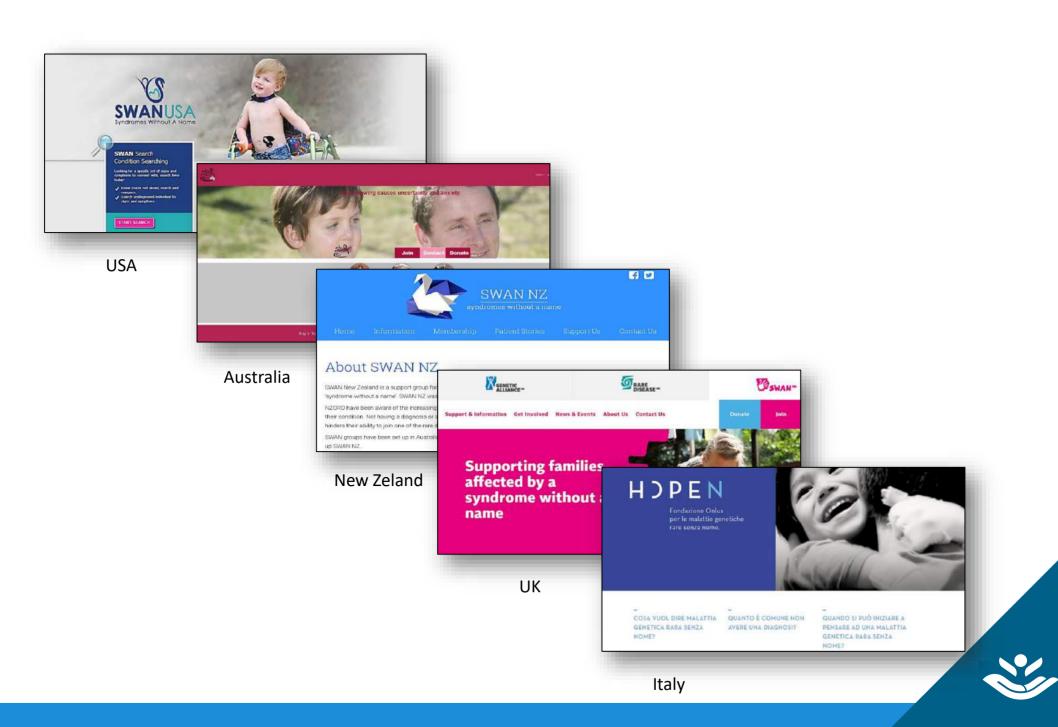
Cellular responses

The rare diseases cornerstones

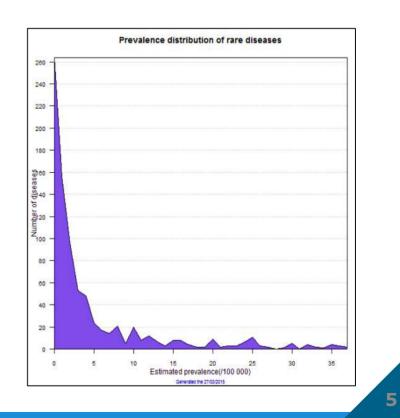
Diagnostic delays and misdiagnosis

The Voice of			
12,000 Patients			
Experiences and Expectations of Rare Disease Patients on Diagnosis and Care in Europe			
Source of information	Delay in diagnosis for 50% of patients	Delay in diagnosis for 75% of patients	
CF	1.5 months	15 months	
TS	4 months	3 years	
DMD	12 months	3 years	
CD	12 months	5.8 years	Misdigno
PWS	18 months	6.1 years	/
MFS	18 months	11.1 years	
FRX	2.8 years	5.3 years	6
EDS	14 years	28 years	

- Average diagnostic delay: 7.6 years in USA; 5.6 years in UK
- 40% of patients are originally misdiagnosed.


Undiagnosed patients

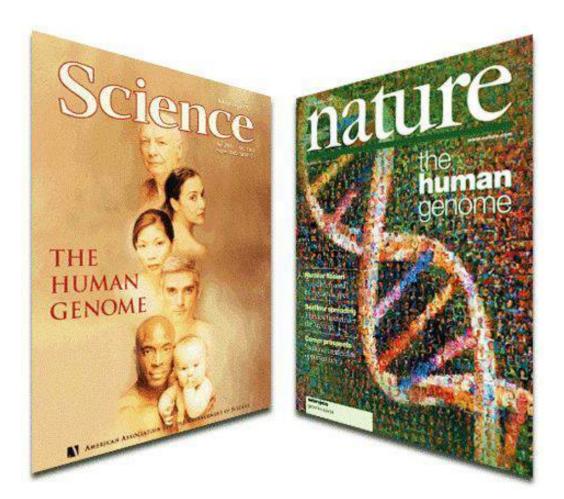
- 6% of RD patients remains undiagnosed (National Institute of Health).
- 40% of disabled children does not have a diagnosis (*Roxby P, BBC News, UK, February 2nd, 2014*).



Patients organisations (SWAN - Syndrome Without A Name)

Why so many undiagnosed patients?

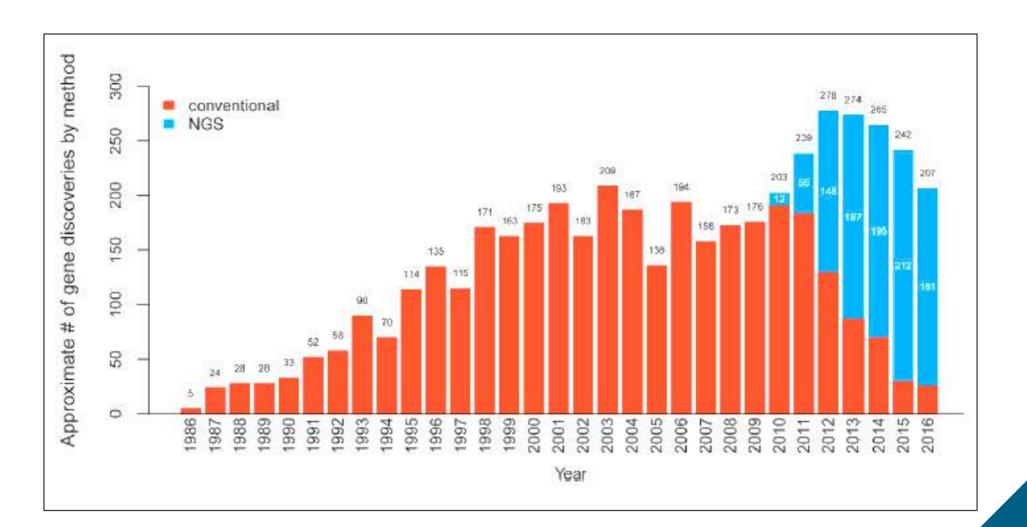
- The "rarity's" figures (according to Orphanet):
 - ~ 100 RDs: prevalence between 5 to 1 in 10 000;
 - ~ 250 RDs: prevalence between 1 in 10 000 to 1 in 100 000;
 - ~1 000 RDs: prevalence between 1in 100 000 to 1 in 1 million;
 - >5 000: a few patients worldwide.
- Absence of diagnostic "handles".
- Unusual presentation of a known disorder.
- Casual associations of two RDs.
- New diseases.



The Human Genome Project First draft June 26th, 2000

Human Genome Project February 15-16, 2001

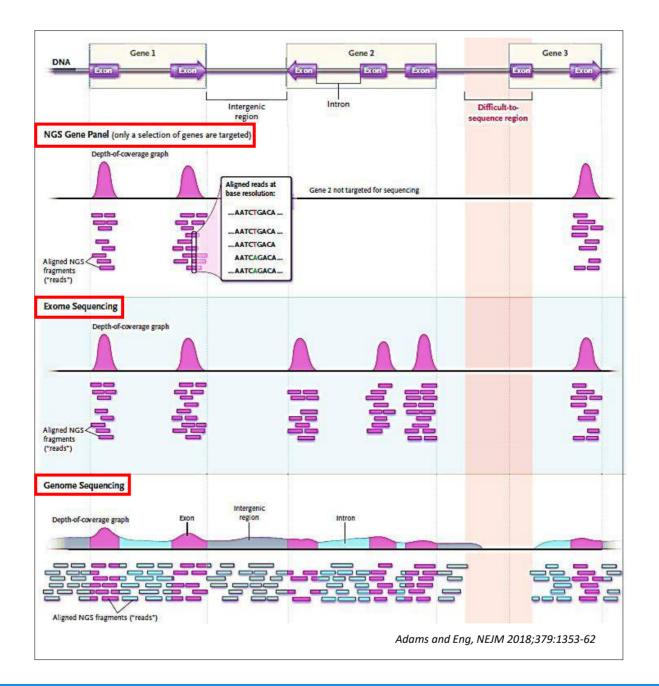
"... The complete human genome sequence will facilitate the identification of all genes that contribute to disease."


The genetic (technological) revolution

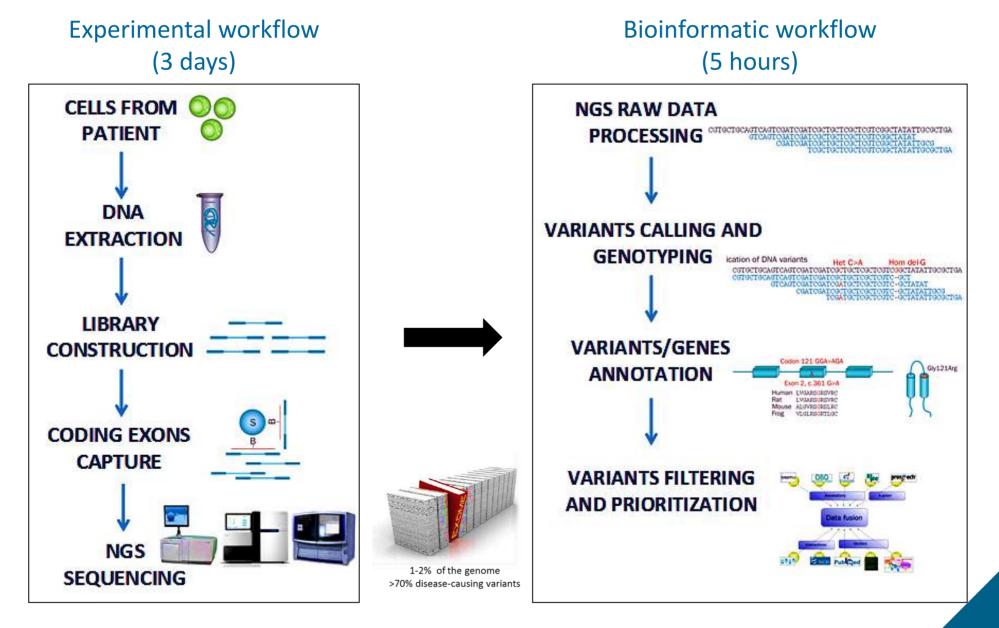
During the last 18 years, the genetic revolution has cut down by a figure of about 250 000 times, the *duration* and *costs* of genomic analyses

S

The NGS impact onto gene discovery Boycott et al, Am J Hum Genet, 2017; 100:695-705


Genes, diseases and disease-genes

Number of Entries in OMIM (Updated November 6 th , 2018)										
MIM Number Prefix	Autosomal	X-Linked	Y-Linked	Mitochondrial	Totals					
Gene description	15,174	731	49	35	15,989					
Phenotype description, molecular basis known	4,999	327	4	31	5,361					
Phenotype description or locus, molecular basis unknown	1,447	124	4	0	1,575					
Other, mainly phenotypes with suspected Mendelian basis	1,653	105	3	0	1,761					



NGS approaches to disease-gene discovery and diagnostics

Whole exome sequencing (WES) workflow

WES data analysis

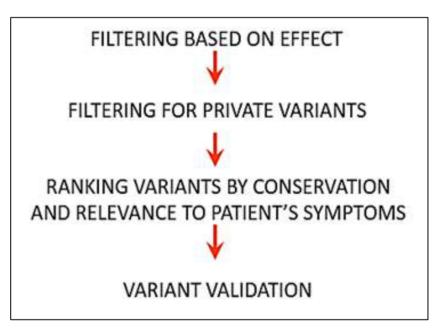
WES data processing, reads alignment, and variants call lead to thousands of variants

Alignment

~ 40-100,000 variants

+D COM	105	-	AIT	(QAN)	DATE:	160	CORNET	maplel	ACD CANEL	OWNE	TROOD_COOLT
1812	40011194	Τ.	18.	34.78	1403	80109-83204	INTAKKERS	1712030983118,458			STAT ST ALPER.
1015	07418328	4	20	ML 20	fryfil oant	80109-63034	III-MOORER.	191 00000044,1212	1990	Lb Lb	NOR_DEPOSITION, COM
ibrEl.	4704036	£	.1	04.77	th off-step	AD-147-8500.4	CT.40.001PL	0/120309/304,1242	0091	Cost Vec	NON SHORTHOUS CODEN
Hitt.	381837			100.75	RADO	AD4176-0130314	IF ADDED DO FO	MURCH SECOND	E ENDE	Rabicito	WORL SPECIFICATION COURSE
1.2.1	52110128	4	1	14.22	1.055	30+145+440014		191 423 42925, 1812	C2066	MANTI	NEW PROVIDENT COOPS
det.5	49112380	6	6	85.22	PAGE	a0-1,47-8,500,4	22.40 CP 50.Pt	071354-01314,0507			INARE CRAMEN
101120	1028	TAC	3	126.71	PATS.	AD4144-85004	GRADICALISM.	17135858-180.358	-0		100AL SHIT
c.b.a	10004368	€ .	1	54.77	Sector	ND-1/45-8520/4	OT NO. OG PC	01224382061412	Scnik:	Excense	1935_DHOST-OUX_CODH
1115	1911/2012	0	τ.	121.77	FA15.	aci (#+1300)#	OF MECKIPS.	DI N TH OLDING	1 1795/7	100001	NOT MINUS AND COURSE
stat.	\$216700	τ.	C	498.77	P.43.R.	30-141-81004	120-140-120-020-020	EFE GELORICE, EL	V1115	\$14/2Dr	NOT_ORGERVENT_CODIN
Lind .	12110900	*	¢.	141.77	1A15	AD-124-8300.4	07.40.0075	07120239.130.0.340	G10 ⁵	LAUKUR	NON SHOWNERS COOK
1104	3912915	44		18.77	8.600	BCH139-830314	IN MALE BOARD	DATES OF A COLUMN AND DECIDENTS	00.58	IR AUCTIN	HOR INDUSTRIESS CORP.
2961	15112402	9	•	101.27	Briell anbert	80-1/0-8.0004	01.50 00 PL	\$F1.30409.088.0.210	Volask.	(BayDa	HOT DESCRIPTION COOPS
ibet:	15342404	T	C	141.27	frud prest	AD-147-80004	07.40.00.Pt	01 10399 2010 2151	\$12584	etchet.c	NOR SHOTHWORK CODES
etetii-	22497253	Α.	E.	63.70	6.455	aliterst ENSALS	CITADER STOPE	4	CMSE	AupGost	NOR SPREATHERS CEDES
1.21	40.412800	٨		1-1.27	7415	40-129-8.0204	UR ADLODIR	1/1 A128.00 277 3 110	7 VINIE	1/0/232	ion meanvent com
1919	OTNESS.	e	1	121.77	DOD (stel	\$5x1,69x8,300,6	OF AD OC 19.	171103194.00411174	5 KY28	Charles .	NOT SHOATWOULCOOK
rte3	1711176-04	†	C	181.57	1.02	10-140-15004	129 109 00215	101 02209-25340365	19170	AugiCon	NOR DROATSCORE COOR
abox.	\$43,3835	66.	4	2405.22	FAID	RD+174-8.000 #	DRADIOGPL	1/1220-021-2140-022	-104		F5464, \$1071
IPUL	HARDON	4	1	087.22	6405	ACH1.0714.300 A	10 MILE SOPE	LPI BUT HEREIGHE	104301	ONVER	HOR_MINE BRUELD_CENNS
1015	14162017	a.	A	#331.77		80-1/1-80004	CTADIOG/L	1/1.75,709,000 (JAN)	FROM	Couto	NOT THE STREET, COOPS
18123	1014548	0		6325.73	11001001	#2+1#F=#500#	00.40.00.0	01 Reindkrasels	+eetine	EALPER.	WAS STREET, CORE
19th	101002	6	T		Stoffastel	BD+195+855018	G2.40100.9K	01 1178 W 6852,058		a Spiratz	NOA SHORTHERE CORP.
1.23	44642233	۸.	1	161.77	P.450	80-1/4-81004	25 AD CO.P.	6/1 41 18 N 30 G 315	t (STLDI	or times	NOT STRONTLEND, COORD
1403	150756128	6	1	84.72	P.415	ACA (97+8 500 A	UR-MOROLIPE	171-45.8598 1131144.95			STALS P. ACCEPTOR
11.1	100444503	Α.	× .	141,87	1.85	k0-1;40-8,550;4	CRAD-COLIR.	041-4412-09-1710.2308	011098	side Ca	HOR SHORINGUE COON
and a	351162-2	1.1	0	35.17	FA00	68101-0.41120-	OF ADDY BOTO	1	0.564	MARKING .	NOT STREAT VENUE AND STREAM

Functional annotation

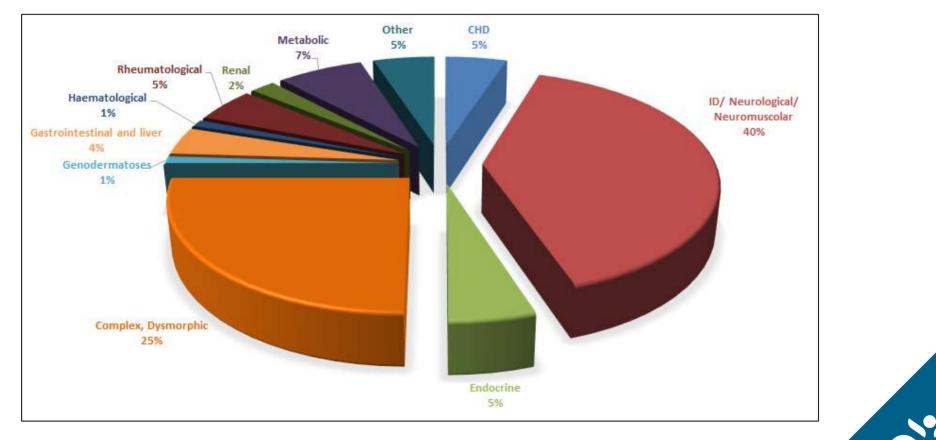

- Recurrence
- Functional impact
- Associated clinical data
- Pathways and processes
- Expression
- Data from animal model

Assumptions

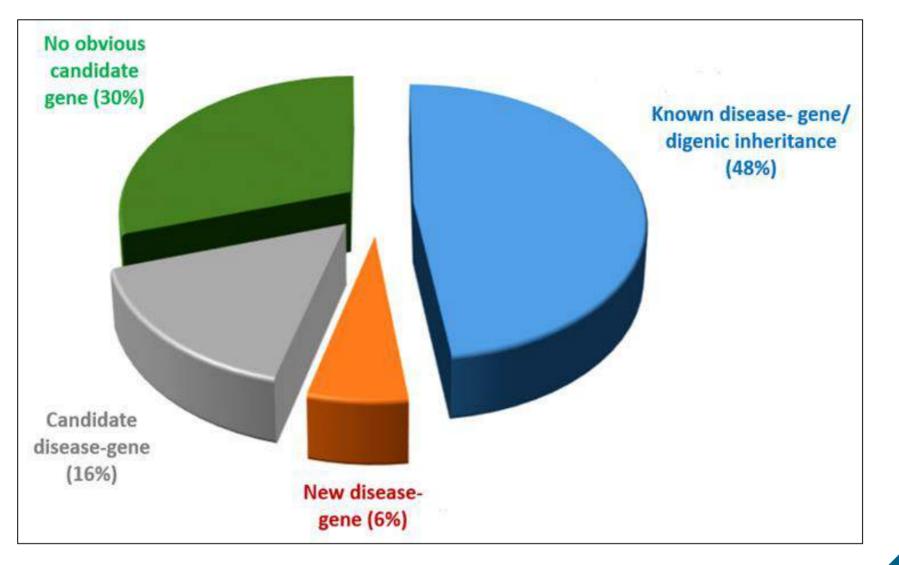
- Mutations affect CDS.
- Mutations are rare, likely private.
- Mutations are expected to have functional impact.

Analysis

- Focused on known disease genes.
- Extended to all annotated genes.


Models

- Autosomal dominant
- Autosomal recessive
- X-linked dominant
- X-linked recessive
- Postzygotic
- Structural
- Digenic
- Imprinted
- Mitochondrial



The OPBG pilot research-project on undiagnosed patients (years 2013-2015)

- 123 probands/trios
- undiagnosed diseases/complex phenotypes
- Unsolved by high resolution array-CGH & targeted gene analyses
- Average diagnostic delay: 7 years

Results of the OPBG pilot UND study

Impact of the pilot UND study onto the OPBG Genetic Diagnostic Laboratory

- Up to year 2015
 - 150 disease-genes routinely available for diagnosis

From 2016 onwards

- 2 436 genes routinely analysed
- Panels available for analysing 41 diseases' groups
- Clinical exome (mendeliome):
 - > 6 800 genetic diseases

The OPBG 2016-2018 «UND patients program» Major goals and concepts

Al clinical level:

To validate WES/WGS/WTS as first-pass diagnostic tools and transfer them to clinical practice.

At research level:

To understand the molecular background of rare and newly recognized Mendelian disease.

Nasce il primo ambulatorio in Italia dedicato alle malattie rare senza diagnosi

Nella sede di San Paolo un nuovo percorso dedicato per ridurre i tempi diagnostici e di presa in carico

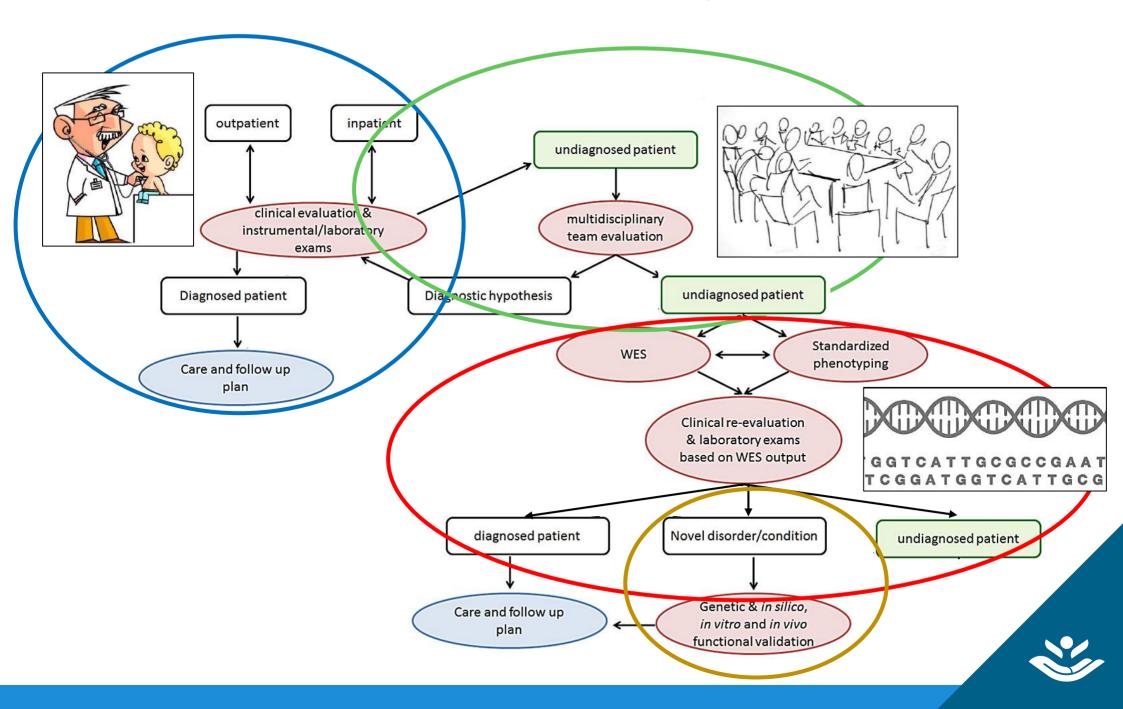
Opening of the first Italian outpatient clinic for patients affected by undiagnosed diseases *At the St Paul out-patient clinic an innovative track to shorten the diagnostic and management procedures*

12 ottobre 2016

Online medical advice

VS

Face-to-face clinical assessment

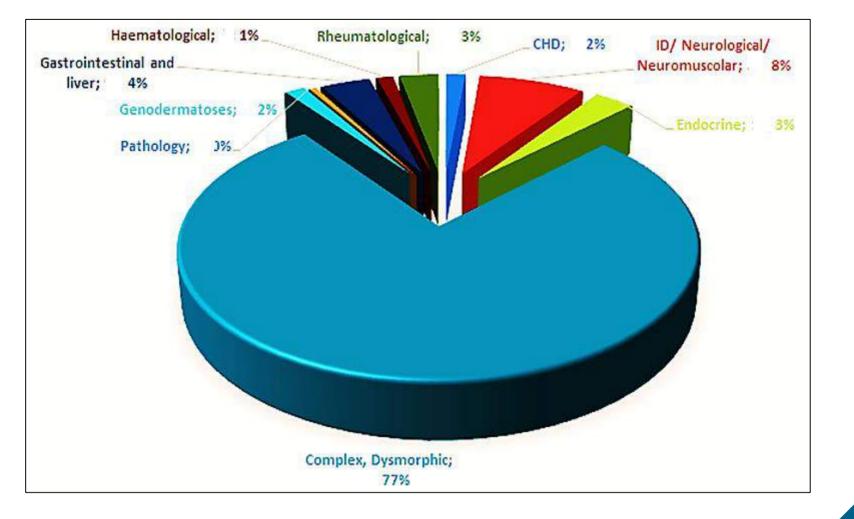

The Italian Clinical genetic experts' teleconsultation network

Associated

The OPBG flow-chart for UND patients

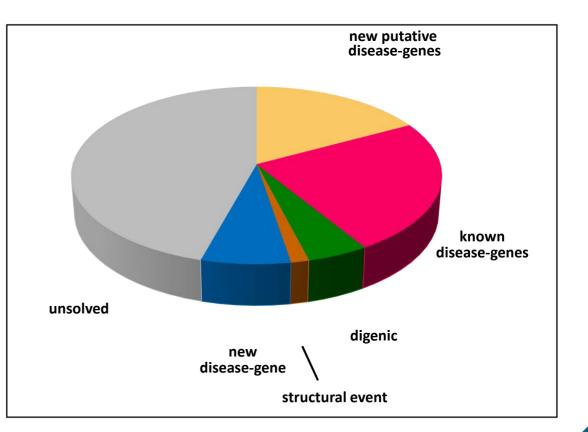
The OPBG UND program Cohort and selection of cases

Study sessions (Oct 2016 - Sept 2018), N=58 Discussed cases, N=652 (591 patients)

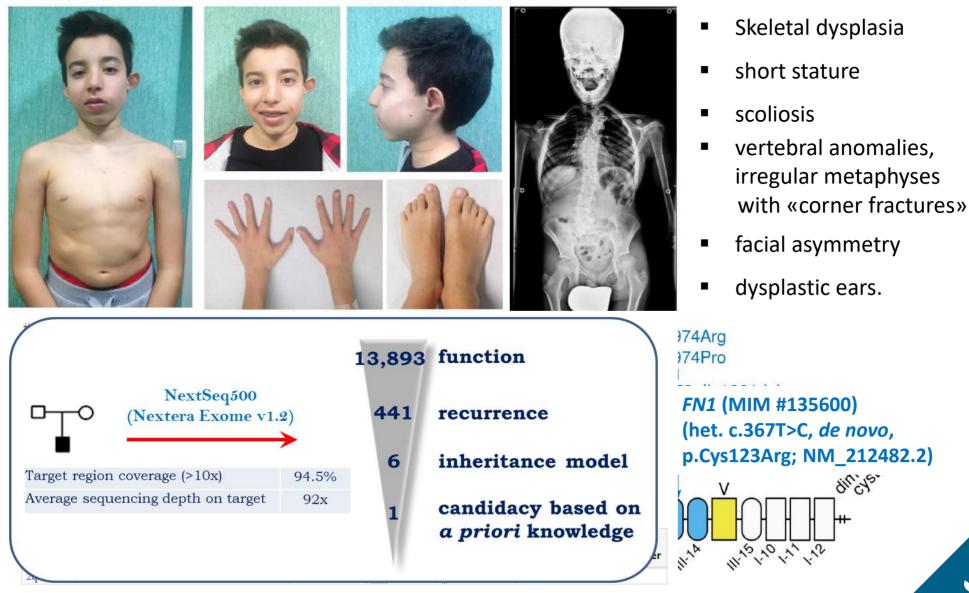

Clinical assessment N=149 (25%)

SNP/CGH array analysis, clinical exome/gene panels, N=201 (34%)

WES, N=241 (41%)


Multidisciplinary teleconsultations (Oct 2016-Sept 2018)

The OPBG UND program WES results


Novel disease genes	7.0%
Known disease genes	33.0%
phenotypic expansion &	
allelic disorders	16.0%
recently identified disease	
genes (<3 years)	26.8%
false negative	1.2%
postzygotic events	1.2%
Digenic events	3.0%
Structural rearrangements	0.6%
Novel candidates	16.0%
Unsolved	40.4%

The OPBG UND program: new disease-gene (OMIM 184255) Spondylometaphyseal dysplasia, Sutcliffe type

Fibronectin-1, high molecular weight glycoprotein, present on cell surfaces, in extracellular fluids, connective tissues, and basement membranes

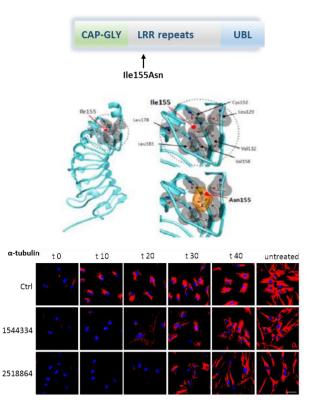
OMIM 604934 PEAMO

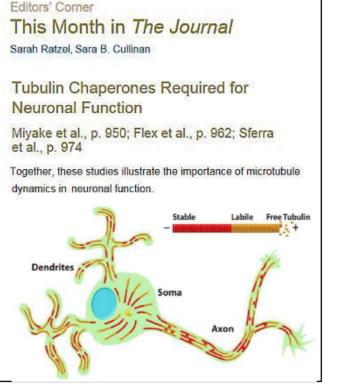
Progressive Encephalopathy, Amyotrophy, Optic Atrophy

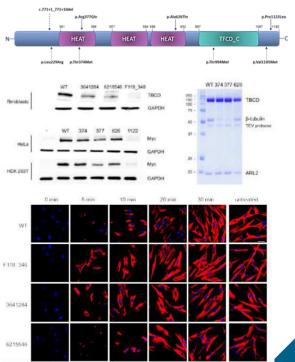
The OPBG UND program: new diseases Aberrant microtubule dynamics and neurodegeneration

OMIM 617193 PEBAT Progressive Encephalopathy, Brain Atrophy, Thin Corpus Callosum

The American Journal of Human Genetics 99, 974-983, October 6, 2016

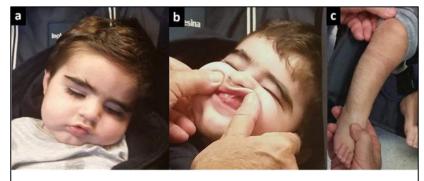

The American Journal of Human Genetics 99, 962-973, October 6, 2016


TBCE Mutations Cause Early-Onset Progressive Encephalopathy with Distal Spinal Muscular Atrophy


Antonella Sferra,^{1,11} Gilbert Baillat,^{2,11} Teresa Rizza,¹ Sabina Barresi,¹ Elisabetta Flex,³ Giorgio Adele D'Amico,¹ Emanuele Bellacchio,¹ Andrea Ciolfi,^{1,4} Viviana Caputo,⁵ Serena Cecchetti,⁶ Annalaura Torella,^{7,8} Ginevra Zanni,¹ Daria Diodato,¹ Emanuela Piermarini,¹ Marcello Niceta,¹ Antonietta Coppola,⁹ Enrico Tedeschi,¹⁰ Diego Martinelli,¹ Carlo Dionisi-Vici,¹ Vincenzo Nigri Bruno Dallapiccola,¹ Claudia Compagnucci,¹ Marco Tartaglia,^{1,12,*} Georg Haase,^{2,12} and Enrico Bertini^{1,12,*}

Biallelic Mutations in *TBCD*, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

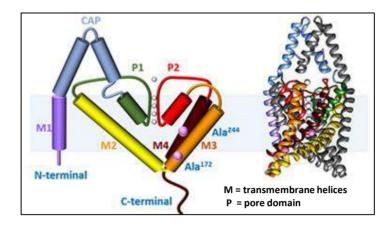
Elisabetta Flex,^{1,18} Marcello Niceta,^{2,18} Serena Cecchetti,³ Isabelle Thiffault,^{4,5,6} Margaret G. Au,⁷ Alessandro Capuano,² Emanuela Piermarini,² Anna A. Ivanova,⁸ Joshua W. Francis,⁸ Giovanni Chillemi,⁹ Balasubramanian Chandramouli,¹⁰ Giovanna Carpentieri,^{1,11} Charlotte A. Haaxma,¹² Andrea Ciolfi,^{2,13} Simone Pizzi,² Ganka V. Douglas,¹⁴ Kara Levine,¹⁴ Antonella Sferra,² Maria Lisa Dentici,² Rolph R. Pfundt,¹² Jean-Baptiste Le Pichon,¹⁵ Emily Farrow,⁴ Frank Baas,¹⁶ Fiorella Piemonte,² Bruno Dallapiccola,² John M. Graham, Jr.,⁷ Carol J. Saunders,^{4,5,6} Enrico Bertini,² Richard A. Kahn,⁸ David A. Koolen,¹⁷ and Marco Tartaglia^{2,*}

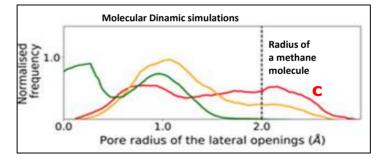


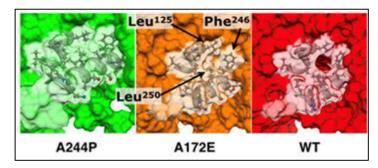
24

The OPBG UND program: new disease (FEIGH syndrome) <u>Facial dysmorphism</u>, <u>Epilepsy</u>, <u>Intellectual disability</u>, <u>Gingival hypertrophy</u>, <u>Hypertrichosis</u>

Patient 1 c.515C>A (p.Ala172Glu)

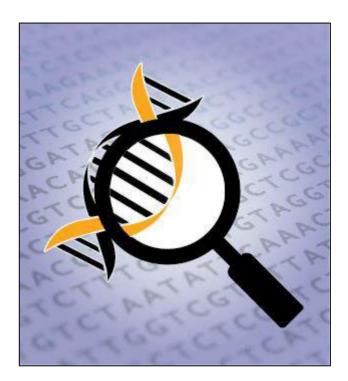



Patient 2 c.730G>C (p.Ala244Pro)



Patient 3 c.515C>A (p.Ala172Glu)

Potassium Channel, Subfamily K, member 4; KCNK4


The OPBG UND program Major research outputs

disease gene	year	inheritance	disease	ref.		
KCNH1	2014	AD	Zimmerman-Laband syndrome	Nat Genet, 2015, 47:661-7		
KCNJ6	2014	AD	Keppen-Lubinsky syndrome	Am J Hum Genet, 2015, 96:295-300		
NKX6-2	2014	AR	hypomyelinating leukodystrophy	Brain, 2017, 140:2550-6		
TBCD	2014	AR	early-onset neurodegenerative disorder	Am J Hum Genet, 2016, 99:962-73		
RNF220	2014	AR	hypomyelinating leukodystrophy	Manuscript in preparation		
TBCE	2014	AR	early-onset progressive encephalopathy	Am J Hum Genet, 2016, 99:974-83		
TUBB2A	2014	AR	early-onset neurodegenerative disorder	Hum Mol Genet, 2018, 27:1892-904		
CDC42	2015	AD	variable syndromic traits	Am J Hum Genet, 2018, 102:309-20		
DYNC2LI1	2015	AR	Ellis-van Creveld syndrome	Clin Genet, 2018, 93:632-9		
CREBBP	2015	AD	Novel syndromic condition	Am J Med Genet A, 2016, 170:2681-93		
SPEN	2015	AD	novel syndromic disorder	Manuscript in preparation		
ТВСК	2015	AR	infantile syndromic encephalopathy.	Am J Hum Genet, 2016, 98:771-81		
ATP6V1C1	2016	AD	novel syndromic disorder	Manuscript in preparation		
FN1	2016	AD	spondylometaphyseal dysplasia	Am J Hum Genet, 2017, 101:815-23		
KIF5B	2016	AR	epileptic encephalopathy	Manuscript in preparation		
SCUBE3	2016	AR	novel syndromic disorder	Manuscript in preparation		
TET1	2016	AR	novel syndromic disorder	Manuscript in preparation		
CLTC	2017	AD	epileptic encephalopathy	Am J Hum Genet, 2017, 101:664-85		
DHDDS	2017	AD	epileptic encephalopathy	Am J Hum Genet, 2017, 101:664-85		
НЗГЗА,НЗГЗВ	2017	AD	neurologic dysfunction and congenital anomalies	Nat Commun, under revision		
KCNK4	2017	AD	novel syndromic disorder	Am J Hum Genet, 2018, 103:621-30		
PIGK	2017	AR	congenital disorder of glycosylation	Manuscript in preparation		
SMARCC1	2018	AD	novel syndromic disorder	Manuscript in preparation		
POU3F3	2018	AR	novel syndromic disorder	Manuscript in preparation		

In total: 20 novel disease-genes, 14 new diseases


Clinical exome in the OPBG genetic diagnostic laboratory (Jan 2016 - Oct 2018)

- Analyzed genes per sample: 6 800
- Analyzed patients (trios): 478
- Solved cases 310 (65%)

Clinical exome Diagnosis attained in a complex patient

- Male 7 year-old.
- Microcephaly, facial dysmorphism.
- Pectus excavatum, scoliosis.
- Hands' camptodactyly, toes syndactyly, varus-supinatus right forefoot, valgus-pronate left forefoot.
- MRI: hypoplasic corpus callosum and cerebellar vermis, enlarged cerebral ventricles and periencephalic spaces.
- Atrial septal defect, persistent left superior vena cava.
- Bilateral optic and chorio-retinal atrophy.
- Severe mental retardation; unable to walk unsupported, absent speech.

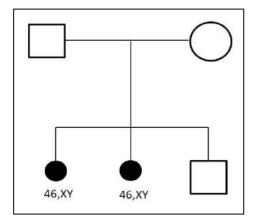
TARP syndrome

311900

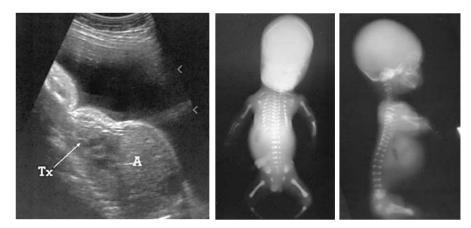
TARP SYNDROME; TARPS

Alternative titles; symbols

TALIPES EQUINOVARUS, ATRIAL SEPTAL DEFECT, ROBIN SEQUENCE, AND PERSISTENCE OF LEFT SUPERIOR VENA CAVA PIERRE ROBIN SYNDROME WITH CONGENITAL HEART MALFORMATION AND CLUBFOOT


Phenotype-Gene Relationships

Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key	Gene/Locus	Gene/Locus MIM number
Xp11.3	TARP syndrome	311900	XLR	3	RBM10	300080


Clinical features	TARPS	Smith-Lemli- Opitz syndrome	Oral-Facial- Digital syndromes	Joubert syndrome and related disorders	Greig syndrome / Pallister-Hall / Hydrolethalus	Ellis-van Creveld and Short-Rib polydactyly syndromes	Bardet-Biedl syndromes
Cardiac defect	+	+	+	+	+	+	+
Atrial septal defect	+	+	+	+	+	+	+
Persistent left superior vena cava	+	+	•	-	-	+	+
Abnormal pulmonary venous drainage	+	+	•	-	-	-	-
Atrioventricular canal defect	•	+	+	-	+	+	+
Common atrium	-	-	+	-	-	+	+
Conotruncal defect	+	-	+	-	-	-	-
Left-sided obstruction	+	-	+	+	-	-	-
Postaxial polydactyly	+	+	+	+	+	+	+
Skeletal anomalies (others than polydactyly)	+	-	•	-	+	+	-
Oral hamartoma	+	+	+	-	-	+	-
Cerebellar anomaly	+	-	+	+	-		-
Ocular anomalies	+	+	-	+	-	-	+
Pulmonary anomalies	+	+	-	-	-	+	-
Inheritance Causative genes	XL RBM10	AR DHCR7	XLD, AR OFD1, WDPCP, TTCTN3	AR INPPSE, TMEM216, TMEM138, CEP290, CEP104, NPHP1, TMEM237, ARL13B, CC2D2A, CEP120, TMEM67, KIF7, TMEM107, TMEM231	AD GLI3, KIF7	AR, AD EVC, EVC3, WDR35	AR BBS1-BBS12, CCDC28B, SDCCAG8, ARL6, TMEM67, C8orf37, MKS1, MKKS

Clinical exome Diagnosis reconsidered

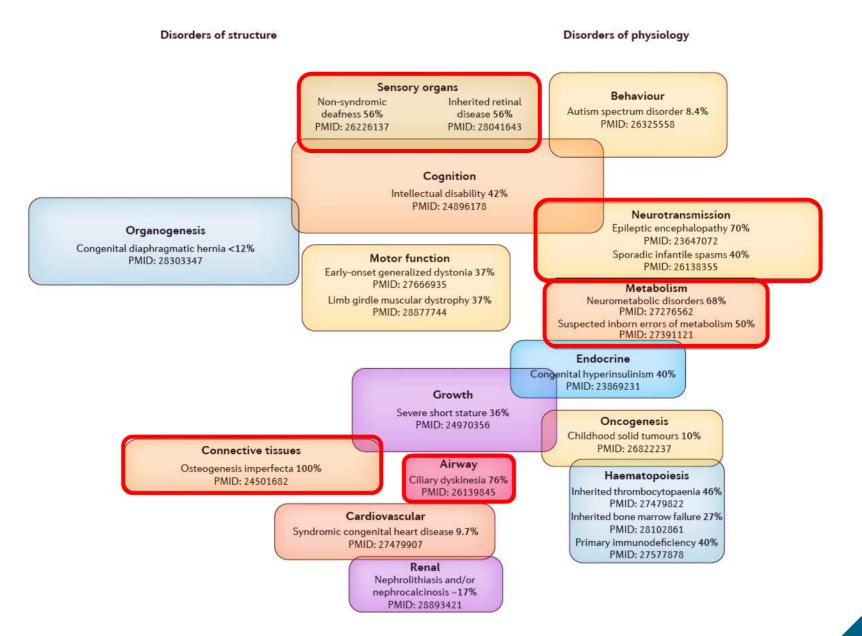
- Two foetus with IUGR
- Hypoplasic thorax and lungs, short ribs, hypoplasic long bones, slightly bowed humeri and femurs
- Intestinal dilatation in the 1st foetus
- Abnormal right kidney with cystic tubular dysplasia in the 2nd foetus.

NGS analysis of foetal DNA performed in Germany. The panel included 17 genes related to short ribs skeletal dysplasias: *NEK1, TTC21B, IFT1T2, IFT80, DYNC2H1, DYNC2D1, KIAA0586, WDR19, WDR35, IFT140,*

WDR80, WDR34, CEP120, EVC, EVC2, IFT122, IFT43.

No pathogenic variant detected.

Clinical exome

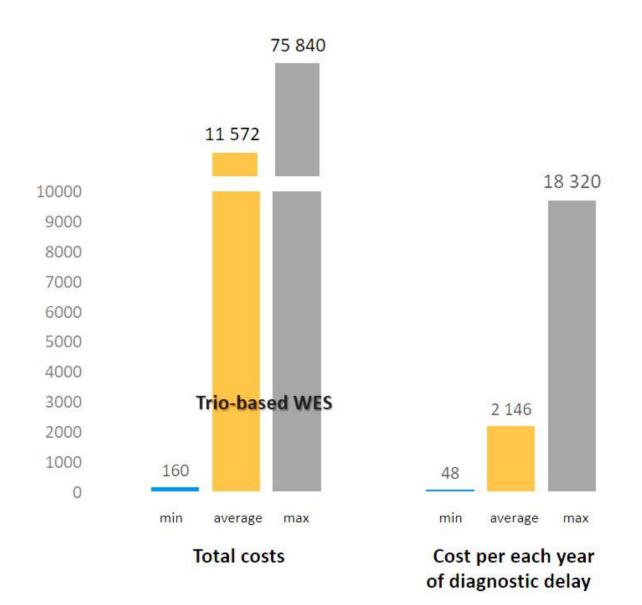

Identification of a new genotype-phenotype correlation

- Growth retardation prenatal onset
- Delayed psychomotor development
- Facial dysmorphism (Kabuki-like syndrome)
- Hypoplasic adenohypophysis, absent neurohypophysis

Diagnostic rates based on WES in classes of paediatric genomic diseases

A new paradigm for patients affected by undiagnosed rare diseases The decreasing cost of genotyping information Lu JT et al, NEJM, 2014;371:593-6

WES cost-effectiveness analysis

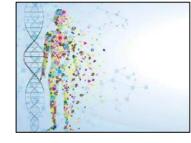


- Sub-cohort: 211 patients (1mo 43ys).
- All investigations, procedures and inpatient/outpatient assessments collected retrospectively by using the informative system of the Bambino Gesù Children's Hospital.

- Costs of diagnostic procedures calculated based on the Italian NHS tabs: <u>http://www.salute.gov.it/portale/temi/p2_6.jsp?lingua=italiano&id=3662&area=programmazioneS</u> <u>anitariaLea&menu=vuoto</u>.
- Assessed parameters: total costs; minimum, maximum and average costs for each indicator; costs
 of each year of diagnostic delay.

Cost-effectiveness analysis (€)

The diagnosis's impact


- To not feel alone, and, thus, to be part of a community.
- To obtain targeted genetic counselling.
- To access tools available for the genetic monitoring of pregnancies at risk.
- Improvement of the disease's management.
- Availability of personalised/precision medicine (in some cases).

Take-home messages

- NGS offers unique opportunities in translational medicine.
- WES has a high diagnostic yield when applied to undiagnosed patients (> 50% in our UND OPBG).
- A significant proportion of cases carries mutations in novel disease-genes, but this is highly dependent on patients' enrollment criteria.
- Among cases with mutations in known disease-genes, a large fraction (>55% in UND OPBG) manifests either an atypical presentation, or an allelic disorder, or has mutation(s) in a recently identified disease-gene.
- Functional validation efforts (*in vitro* and *in vivo*) are mandatory to support the causative role of mutation(s).

The OPBG team

Clinical Geneticists

Maria Cristina Digilio Maria Lisa Dentici Clementina Radio

-omic Research Lab

Marco Tartaglia Marcello Niceta Sabina Barresi Francesca Pantaleoni

Bioinformaticians Andrea Ciolfi Simone Pizzi

Diagnostic Genetic Lab

Antonio Novelli Emanuele Agolini Francesca Terracciano Francesca Lepri

Clinicians

Andrea Bartuli Enrico Silvio Bertini Carlo Dionisi Vici Francesco Vigevano Marco Cappa Fabrizio De Benedetti Franco Locatelli Pietro Bagolan Renato Cutrera Francesco Emma May El Hachem Giuliano Torre rare diseases neuromuscular diseases metabolic diseases neurological disorders endocrine diseases rheumatic diseases oncological-haematological disorders paediatric surgery lung diseases kidney diseases skin diseases gastrointestinal diseases **Structural Biology** Emanuele Bellacchio

Cell Biology

Maria Letizia Motta Valentina Muto Claudia Compagnucci Antonella Sferra Martina Venditti

Computational Infrastructure

